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Synchronous oscillations in the cerebral cortex
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The dynamics of a cortex driven by a finite number of white-noise point sources is studied using a recently
developed wave-equation formulation. Green’s functions, power spectra, fluctuation levels, and two-point
correlation functions are computed analytically and numerically. It is shown that a range of observed properties
of so-called synchronous oscillations in the cerebral cortex can be correctly reproduced using the wave equa-
tion that involves only excitatory interactions between neurons. In particular, the observed existence of a
maximal correlation at zero temporal lag between spatially separated points is reproduced and explained for a
cortex driven by two white-noise sourcg§1063-651X98)03904-X]

PACS numbes): 87.22.Jb, 87.22.As, 87.16e

[. INTRODUCTION level of activation of cortical sites by inputs from subcortical
sites[6]) partially determine which neuronal pools synchro-

A long-standing puzzle in neurophysiology is the so-nize with each other. Relative lags between stimulated sites
called binding problem which may be stated as follows: can be more complicated near the site of input: Some cells in
Among the many concurrent patterns of neuronal activitythe field of input can lead others nearby by a few millisec-
present simultaneously in the billions of neurons in the brainpnds, particularly if the leading cells are particularly pre-
how are related aspects of a single stimulus bound togethet®sely responsive to the features of the stimulus; yet appar-
For example, how are the disparate features of a face, ea@ntly precise synchrony appears between more distant sites
analyzed by specific cerebral areas that receive visual inputnd across most cells in the local populatj@i
and respond specifically to movement, angles, color, etc., The mechanisiis) via which the synchronous oscillation
associated and seldom confused with incidental aspects @ generated is a subject of controversy and it is now fairly
the background, despite complex concurrent changes in theidely accepted that multiple mechanisms may be involved
visual stimulus? Recent findings in neurophysiology indicatg8]. In most instances results cannot be explained by concur-
that the solution of this problem may lie in the brain’s use ofrent synchronous inputs to the separated sites, although this
a phenomenon termesiynchronous oscillatioto correlate  sometimes plays a ro[®,10]. A variety of other experimen-
spatially separated responses to a stimulus. The main putal and theoretical approaches have been made to the prob-
pose of this paper is to apply the recently developed wavelem. These include the recognition that limit cycle oscillators
equation formulation of cortical dynamidd] to elucidate representing single neurons can mutually entrain to form in-
this phenomenon. dependent synchronized clustdikl,12. Simulations also

It has been shown that clusters of neurons at simultaindicate that local lateral inhibition might entrain synchrony
neously stimulated sites in the cortex and elsewhere in thgl3] and that nonoscillating interlocking chains of neurons
brain can exhibit synchronous oscillations of neural firing(so-called synfire chains can shift phase into synchrony
rates over distances comparable to the size of the cortex afd4]. Simulations of intercellular interactions in the hippoc-
that this synchrony typically appears in circumstances wheampus, which model excitatory and inhibitory neuronal in-
the stimulus properties are such that the features of theeractions via specific chemical neurotransmitters in consid-
stimulus demand binding if a perceptual whole is to be creerable detail, were found to account for both synchrony and
ated[2-4]. In this context synchronous oscillations are de-specific patterns of firing as seen in in-vitro slices of this
fined to be oscillations for which the temporal cross correlategion of the braiff15]. However, these results also depend
tion between signals at different locations exhibits aprimarily on local interactions among inhibitory cells and
maximum at zero lag; we will also call such oscillations encounter some difficulty in explaining the ubiquity of long-
zero-lagoscillations on occasion. range synchrony mediated by excitatory connections.

In a recent review{5] findings were summarized that  All these attempts at elucidation and explanation have
showed that synchrony appears at multiple scales, from smaénded to concentrate upon interactions between specific
pools of locally connected neurons to sites on opposite sidesells, considered as interacting discretely with each other,
of the brain. Both structural connectivitye.g., by cortico-  while ignoring the fact of the embedding of these cells in a
cortical axonal fibessand functional dynamic state.g., by  continuum of intercellular connections. These considerations

raise the possibility that synchronous oscillation might be a
continuum property of large fields of interconnected cells

*Electronic address: robinson@physics.usyd.edu.au and might thus be best accounted for by continuum-field
"Electronic address: jjw@cortex.mhri.edu.au models of neuronal interactions. Such models have been de-
*Electronic address: rennie@physics.usyd.edu.au veloped primarily to account for traveling-wave properties,
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and electrocortical activity more generally, which is usually A. Dynamical equations

recordeq from the scalp as an elec_troencephalogrgm. In a previous papefl] we developed a set of nonlinear
Prominent among models treating the properties of thequations for cortical dynamics in the continuum limit.
extended coupled neuronal field are those of Freefiéh  These equations incorporated excitatory and inhibitory neu-
and Nunez[17]. Recently we proposed a model based onrons, dendritic integration of inputs to a given neuron, finite
similar assumptions, incorporating locally coupled excitatoryaxonal propagation velocities, and the nonlinear relationship
and inhibitory neuronal populations, long-range excitatorypetween inputs to a neuron and its firing rate.
connections, dendritic integration, and axonal time delays The first of the central equations of our model is
[1,18,19. The resulting equations describe the spatial and
temporal properties of a uniform cortex in the continuum
approximation and permit simulations on any scale greater Qe.i(r.)= 1+ e ClVei(rH=Vql’ @)
than that of the inhibitory neuron@ few tenths of a milli-
mete). Using these numerical simulations, it has been demyyhich relates the mean firing ra@,,(r,t) of neurons(the
onstrated recently that fields of zero-lag synchrony that repulse densityin neurophysiological ierminolonto the ap-
produce general features of the experimental data can Bflied potentialV, (r,t), wheree andi denote the excitatory
readily generate@20]. The fields of zero-lag synchrony ap- and inhibitory populations, an@ and V, are constants or
pear as part of a larger field of lag-correlatéicaveling-  order unity. Potentials are measured in units of the standard
wave) activity and do not depend upon synchrony of inputs,deviation of the distribution of neuronal firing thresholds.
nonlinearity of the simulated neurons, or interactions be- The potentialV,;(r,t) at the point where conversion to
tween excitatory and inhibitory cells: Purely excitatory inter- neuronal pulses takes place results after inputs have been
actions are sufficient. summed and filtered through the dendrites. A good approxi-
Recently, we proposed a nonlinear model of cortical dy-mation toV;(r,t) is given by
namics[1], similar in physical basis to versions of the dy-

namical equations introduced earligl8,19, but replacin ap

their formt?lation in terms of Green’s functions b;/)a szve- Vevi(r’t)=gB__a[ue,i(rat)_we,i(rat)]- 2
equation approachl]. This model was not identical to the

previous ones, but incorporated the same neurophysics to a dUg;(r,t)

similar degree of approximation. This model allowed us to gt Qaeai(l)—aUe;(r,1), ()

find cortical steady states and analyze their stability and to
study the propagation and stability of small-amplitude corti- AW, (1.1)
cal waves. In the present paper we use i'F to calculate ana!yti- + =Qaeai(r,1) = BWe,(r,t), (4)
cally the response of the cortex to a finite number of point
sources of stimulation. The results are used to show that ) )
synchronous oscillations arise naturally in the cortex and cayere Qae.i(r,t) represent arrival rates of input pulses at
be explained simply in terms of propagating waves. the dendritesg is a_d_endrmc gain .fgctor, and and 8 are
The structure of this paper is as follows. In Sec. Ii we constants parametrizing the dendritic response to an impulse.

briefly review the wave-equation model and write down theIn effect, diffusion during dendritic propagation smears out

linearized wave equation. We then derive the Green’s func'gheséefmg(r)ral response and the dendritic tree acts as a low-

. : : . a
tion for propagating cortical waves and use it to calculatep Outgoing pulses from each neuron propagate along its

gg:s? l?:?dn sf uggtt;gnosf fll(laj\(/:?lEt?CJnnds t;rzgfegfbmzxmﬁle Cr?l::ﬁ:)ag;’:\xon and axonal tree at a characteristic velogitpAssuming
’ P y an isotropic distribution of axons whose ranges have an ap-

of point sources. In Sec. Ill we evaluate these expression roximately exponential distributiotsee Ref.[1] for de-

numerical_ly for_ some representative cases and compare t Sils), this propagation can be modeled by a wave equation
results with direct solution of the full set of nonllnearf [ the corresponding potentials, i(r t):

cortical-dynamics equations. Comparisons with experimental0
results for synchronous oscillations are also discussed in Sec.

2
V. J

J 2 2¢72 2
&t2+2'}/e,iﬁ+7e,i_v \Y ¢e,i(r’t):7e‘iQe,i(rrt)r
6)

Il. THEORY wherey,j=v/rq; andr,; are the characteristic ranges of the

In this section we first outline the main relevant results ofaxons[1].
our recently developed wave-equation formulation of corti- The incident potential®,e »i(r,t) at a particular location
cal dynamicg1]. These results are then applied to derive thecomprise contributions from the wave potentialg; and
Green’s function of propagating cortical disturbances, andnputs external to the cortex. These inputs are usually split
the two-point correlation function and power spectrum ofinto two components: a uniform meaonspecifiexcitation
cortical fluctuations driven by a finite number of point Qps that results from the total of inputs from noncortical
sources. In all cases we restrict attention to regimes in whicktructures in the brain andspecificexcitationQg(r,t) asso-
only stable waves exi$fl]; cortical instabilities are not con- ciated with the stimulus under investigation. Robingbral.
sidered. [1] defined Q,s to be constant in time and space, while
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Q4(r,t) has zero spatial and temporal averages, leading tgamma-band30-80 Hz spectrum in a strongly stimulated

the final underlying equations of our model: cortex, but we will not consider this problem here. We have
recomputed most of the results of this paper with the inclu-
Qae(r 1) =MeQq(r,t) + ueQnst acePelr 1) —agii(r 1), sion of inhibition, finding only negligible changes for typical

(6)  parameters, so we omit these refinements for simplicity.

Qai(r!t): MiQs(ryt)+MiQns+ aie¢e(r!t)_aii¢i(rit)-

@ C. Green’s function
) ) We are interested in calculating the correlation between
Here the constantdl; determine the strength of coupling of 4 (r t) and ¢(r’,t+ 1) as a function ofr, r’, and 7, a
specific inputs to excitatory and inhibitory neurops,; are  quantity that is experimentally measured. Hence we first
the coupling strengths for nonspecific impul¢es., the rel-  yish to calculateG(r,w) to determine the effect of a point
evant fractional synaptic densitjesnd the coefficientan,  source of frequency at a range . Later we will integrate
are the synaptic densities associated with excitatory and innjs quantity over a frequency spectrum and sum over point
hibitory inputs to excitatory and inhibitory neurons. sources to obtain the correlation function in question.
In Fourier space, the Green'’s function for the wave equa-
B. Wave equation tion (8) is
Robinsonet al.[1] showed that Eqg1)—(7) have a stable L(w) zg
low-Q, fixed point provided),s is not too large. Linearizing G(k,0)= 5 . 792 Pe .
the system around this fixed point, they wrote down an ap- K+ (ye—iw) —L(w)7eG
proximate wave equation for the excitatory wave potential
¢, alone, from which all other fields could be derived in the Using this relationship we can write
linear limit. In Fourier space, this equation is

[De(K,0) = Fe(@)age] pe(k, @) =Fo(@)MQq(K, w), oir )_L(w)ygc;J d?k  ekr
® T e ) 2n? Krg(e)?

(15

(16)

where the cortex is driven by a specific inf@j(k,w), k is
the wave vectorw is the angular frequency,

Fe(®)=0peyil(w), (9)

L(w)injwdkk 2ndg  elkr oo
0

a.w? Jo 27 Jo 2m 2+ q(w)21
L = —a,B 10 w
(@)= o) (i)’ (10 ,
L(w)ysG (= kJp(kr)
De(k,0)=(ye—iw)?+k??, (11 = ZWaeeszo K21 q(w)? (18
pe=CQ[1-Q], (12
2
and Q) is the equilibrium pulse density. :L(w)—ye‘GKo[q(w)r] (19)
For freely propagating waves, E¢) yields the disper- 27mae?
sion equatiorf1]
i i _ 2= 1
(a—iw)(B—iw)De(k,0) aBysG=0 (13 q(a))=;[(ye—iw)z—L(w)ng]”Z, (20)

for Qs=0, with
G=ap.a (14) where J, and K, denote Bessel and Macdonald functions,
YPedee- respectively. Note that the root chosen in E2f)) must have
Reg(w)>0 for stable waves withG<1; otherwise the
Green’s function diverges with increasimg which is un-
ethsical. ForG~0 andw=0,

Equation(13) implies that only the excitatory field need be
followed for low Q% with only excitatory quantities enter-
ing its dispersion equation. This is reasonable given the pr
ponderance of excitatory connections between neurons. Rob-

insonet al.[1] showed that this yields a good approximation 3G
to the dispersive properties of the model medium provided G(r,00= ———Ko(7el/v). (2D

the wavelengths of the waves are much greater than a few 27aep®

tenths of a millimeter. This is not a significant constraint in

practice because typical wavelengths are a few centimeters ifpart from the factoiG/a..=gp., Which represents the net
the human cortex. They also showed that waves are stabfggin in generatingQg from Q., this is simply the static
for G<1, which will be assumed in what follows here. Green’s function derived previousfy].

Wright [20] showed numerically that inhibitory-excitatory ~ The coordinate-space Green’s function can be written in
interactions can play a role in determining the so-callederms of Eq.(12) as
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(o). (b) (19 with Qg4(w). The unnormalized second-order correlation
function between a potentiap.,, due to a more general
source aRR,, and ¢, due to a source &, is given by

Cmn(rar’17'):<[¢em(rat)_<¢em(rrt)>]
X[ an(r',t+7) = (den(r',t+ 7)) 1) (24

o
o
o

o
o

I(r,t) (arb. units)
¢ o

=
I(r,t) (arb. units)

> 0.5

(o]
N

. 0.0 .
20 40 60 80 100 0 20 40 60 80 100

o
o

o] t (ms) t (ms) — d_(,!) e—iw7—¢ m(r w)¢* (r, w) (25)
(c) (d) 2 emts ent! 1@/
0.30 12
025 —~ 1.0 , )
T 0.20 <08 veG dw Cion 5
S £ 06 - 2 27 ° |L(w)|
é‘ 0.15 :'_/ 5 27Taeel) 27T
= 010 =04
= .08 =02 X Qsm( ) Qsn( @) Kol A(w)r n]Kg[a(w)ry],
0.00 0.0 .
O 20 40 60 80 100 0 20 40 60 80 100 (26)
t (ms) t (ms)

where angle brackets denote an average ovewer a time
long compared to the phenomena of interest, which princi-
pally occur on time scales much less than, Irs=|r— R,
r,=|r'—R,|, and we have sé{l,=1 in Eq.(8) without loss

of generality. Note thaQ.,(0)=0 for all m in accordance
with the definition in Sec. Il A, we have used the fact that
¢e(r,t) is real for allr and there is assumed to be no corre-
lation between different frequency components of any one
source beyond the correlation implied by the reality of
de(r,t). Also, |Ko| and|L| both decrease at large for
Unfortunately, the integral in Eq22) does not appear to be G<1 in Eq.(26).

expressible in terms of tabulated functions, except in certain In the limit with &, 3> and smallG, one can approxi-
limiting cases. One important such case is the limit in whichmate the integral in E¢{26) for white-noise sources. Denot-

FIG. 1. Integralsl(r,t)=2ﬂ-aeesz(r,t)/y§G from the Green'’s
function formula(22) vst for r=0.1 m,y=9 ms?, y,=108 5%,
8,.=0.853, Q¥=0.0103, and C=1.82 with (@ G=0.57,
a=pB=2000 s; (b) G=0.95 «=B=2000 s'; (c) G=0.57,
a=B=400s!; and(d) G=0.95,a=8=400 s L.

Srn=5 7 f—e L (w)Ko[ (). (22)

a,8>w andG~0, wherel (»)~1 and ing this integral byl ,,,,, we find[21]
y2Ge 1 | U q Y ]f dow 1
= ~ exd — ye(rmtr)iv] | s—————
G(r,t)= P \/27(9(11'[ (23 mn Zm Yellm™Fn 27 (y2+ w?) 2
Xexg —iwr+io(rn,—r)v] (27)

where ® denotes a unit step function. This result is the
Green'’s function foD¢(k,w)=0, i.e., for the standard two-
dimensional, damped wave equation.

Figure 1 shows the integral in E€R2), which we denote
asl(r,t), for fixed r as a function of time for a variety of
parameters. For large and 8 (short dendritic integration ,
times and small to moderate gaf®, Fig. 1(a) shows that the X Kol el 7+ (rp—=rm)/vl]. (28)
Green'’s function is sharply peaked just after the minimum
propagation time /v~11 ms to the point in question. This The result(28) is included for completeness, but is not used
compares with the algebraic singularity of E§3) in the N What follows. _ ,
limit o, B— . For largerG, Fig. 1(b) shows that the Green’s The total correlation function due to several sources is
function is increased in magnitudeven more so when
G(r,t) rather than the integral(r,t) is considerefl and , )
broadened in time, owing to a greater degree of “regenera- C(r.r vT):% Connlr,r",7). (29)
tion” of neural pulses at sites away from the origin when the '
gain is large. Corresponding results for smatieand 8 aré  The normalized correlation function can be written as
shown in Figs. {c) and Xd). Here the longer dendritic inte-
gration time leads to additional broadening of the response as
a function of time and a consequent reduction in the peak S = C(r,r',7)
magnitude ofl (r,t) relative to Figs. (a) and Xc). v [C(r,r,00C(r',r’,0)]"?’

v
= exd — ye(rm+ri)lv
N A= ve(rmt+rp/v]

(30

D. Correlation functions and spectra which is unity ifr=r" andr=0. The variance o), atr is

The excitatory wave potentiae(r,w) at r due to a
monochromatic point source is given by the product of Eq. (| pe—{Pe(1))|?y=var ¢pe(r)]=C(r,r,0). (3D
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For points near a particular source the correlation function T
and the variance are dominated by that source, owing to the Ko(2)~ Ee*Z,
singularity inKy(z) at smallz [22].
_ _Useful limiting forms of the normal_lzed correlation coef- \ynich is very fast to evaluate and permits further analytic
ficient for two sources can be obtained when one sourcgeatment in some limiting cases. For realat least, this
dominates at’ or when both sources have the same ampli-gpnroximation is  semiquantitatively correct  provided
tude there. Denoting the fluctuating partdf, by f, atr and  Re=0.1 and improves in accuracy for larg, with a frac-
f atr” and noting that these quantities are real, we can Writgjonal error of approximately- 1/8z [22].
Equationg34), (35), and(37) enable the asymptotic form
~ ((f1+To)(f1+f3)) of the power spectrum to be determined. For example, mid-

(37

C(r,r',7)= NPT T (32  way between two white noise sources one has
[((F1+ )N ((F1+12)%)]
( -5 s

If one source(say 1 dominates over the other at and w7 w>apB e (38)
signals frgm the'tvwo'vsources', have equal amplitudes &g. 0 y>e>ap (39)
(32) then impliesC~C,,/+/2 if the sources are uncorrelated 3

e 0 pro>ay. (40)
and C~C,, if they are completely correlatedHere we use P(r, @)~
the notationC,; to denote the normalized correlation due to ' 0 2 By w>a (41)
source 1 along.This case applies whenf is significantly _q
closer to one source than the other. If the amplitudes of the ® 5 afFe>ye (42)
signals from the two sources are equal at both points being \ const, a,B,ve>w. (43)

correlated one always finds=C;;.
The power spectrun®(r,w) is the Fourier transform of Note that3> « has been assumed without loss of generality.
C(r,r,t): It is also worth noting that the strong inequalities in Egs.
(39—(42) are seldom well satisfied in humans sineg 3,
and y, are typically of the same ordét].
P(rw)=2, denl ®)di(r ), (33 Before proceeding, we stress that all the above analysis is
m.n for an infinite cortex. If a finite cortex is to be studied more
accurately, we should replace E{.6) by a sum over all
2 allowed wave vectors. This sum will then appear in subse-
IL(0)|2Qqnf @) Q% (®) quent formulas. However, if nonunifornk€0) modes are
n strongly dampedas our previous work has impliefd]),
boundary conditions will not have a strong role beca(ise
XKola(w)rm]KgLa(w)r,]. (34  the modes will be indistinguishable due to frequency broad-
ening and(ii) the modes will not be much affected by bound-

For the case of a point midway between two sources withyries if they largely dissipate before reaching them.
identical power spectra

2
_( Ye
“\orap?

T

m,

Ill. NUMERICAL RESULTS
76 \°
P(r,o)=A e—2 IL(@)Q«(w)Ko[a(w)a]l?, In this section we evaluate a range of properties of corti-
2maed cal oscillations driven by white-noise sources, including the
(39 correlation function, variance, and power spectrum. By ex-
ploring the effects of varying the cortical parameters and the
degree of phase coherence between the sources, these results
enable us to exhibit a robust candidate mechanism for what
pas been termed synchronous oscillation. A full parameter
survey is not carried out since it is not needed for our main
aim of establishing the existence of the key phenomena.
In this study we use a “canonical” set of parameters un-
,Jess otherwise stated. These values are chosen for the pur-
poses of illustration and to provide continuity with previous
work. Except fore and 8, the canonical values used are the
same as in our previous worKl], namely,v=9 ms?,
¥e=108 s1, g=36, a..=0.853, Q¥=0.0103,C=1.82,
G=0.57, anda=B8=400 s . We have adopted larger val-
Ko(2)= Jmefzcoshdt (36) ues of o and B here than previously to model more accu-
0 rately dendritic integration with a mean response time of 5
ms (previously we hadvr=100 s and 3=350 s ?, giving
Provided its argument is not too small, the functiép can  a peakresponse at 5 msThe full Macdonald functions are
be approximated as used in evaluating analytic expressions from Sec. Il, al-

where 2a is the separation of the sourceaA=4 if the
sources are perfectly correlatefl=2 if they are uncorre-
lated, andA=1 for a single source. At points significantly
closer to one source than the other, the spectrum is dom
nated by that of the closer source.

If we denote the argument of any Macdonald function in
the previous expressions lzy the relationshigarge| < /2
must hold for stable waves since otherwise the relevant e
pressions would diverge unphysically at largg22]. In this
regimeKy(z) can be rapidly evaluated numerically from the
integral form
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(0) a figure-eight passing through the origin and determined by
0.20 0.20 the interplay between the relative path lengths to the points
. 010 in question and the relative amplitudes of the two signals.
o _ One important point is that the correlation has the spatial
£ 000 £ 000 dependence of self-correlatiofs,,, alone. This can be seen
o1 oo by substitutingr;=r,=a into Eq.(26) for correlations rela-
' ‘ tive to the origin, which gives
-0.20 -0.20
-0.20-0.10 0.00 0.10 0.20 -0.20-0.10 0.00 0.10 0.20 2
x (m) x (m) 2
g , 7eG do _.
0.20 1200 @ COyr',7)= > 2 2778 I |L(‘U)|2
—~ 1000 TAed
019 E 800
T . XKolg(w)a][Qsi(w) +Qsa(w)]
— 0.00 -g 600
~0.10 g X{Qs1(@)Ko[d(@)r 1]+ Qsa( @) Ko[a(w)r 3 1}* .
N , 200
—0.20h..2 0 (44)
-0.20-0.10 0.00 0.10 0.20 o} 20 40 60 80
x (m) f (Hz)

N We see from this expression that all the terms are of the same
FIG. 2. Wave quantities for two correlated sources and the cafgrm as those ilC4; andC,, and that both of these terms are
nonical parameters listed at the start of Sec.(H).Time of maxi-  jmportant. The only role played by the relative correlation
mum correlationtya, (s vs position. (b) Maximum correlation  eyeen the sources is to determine the number of factors of

Cmax_vs posit_ion. Note that in this and subsequent figures contouersﬂz that will appear in the final expression. This result is
of this quantity are drawn at levels 0.98, 0.96, 0.94, 0.92, 0.9, 0.8, accord with the discussion following E¢35).
0.7, and 0.6, as require(t) Variance log,C(r,r,0) vs position(d) Figure Zb) shows& the maximum positive correla-
Power spectrum at the origin vs frequency. e max:

tion C(0,r',t), as a function ofr’. A broad maximum of

though we have found that the approximati@7) is a good  near-perfect correlation is seen near the center of the figure,

one for most purposes. decreasing slowly to_vvard the ed_ges. Naively, one might ex-
pect perfect correlation at all points for perfectly correlated
A. Correlated sources sources. However, two-dimension@D) wave equations do

) o ) not yield §-function propagatorgsee Fig. 1, for example

Figure 2 shows results for driving by a pair of perfectly and this reduces the correlation below unity at large ranges.
correlated white-noise sources of unit amplitude with the cayye explore this point further in Sec. Ill B. The remaining
nonical parameters. The sources are correlated with eagipint visible in Fig. 2b) is the pair of features at the sources.
other, but different frequency components of a given sourcerhe |owered correlation here is due to the dominance of a
are mutually uncorrelated here and in all succeeding flgure§ing|e source, as explained following E§2).
Each source was constructed for the purposes of numerically Figure 2c) shows the varianc€(r,r,0) as a function of
evaluating the analytical expressions by choosing compor Thjs quantity is seen to fall off approximately exponen-
nents of fixed amplitude but random relative phase, dIStl’Ibtia"y with distance from each source at large distan@es
uted equally lnjrequer?cy from zero to a maximum fre-geen py the nearly uniformly spaced logarithmic contpurs
quency (10" s7*) far higher than any inverse time scales This reflects the exponential distribution of axonal ranges.

relevant to the problem. In the present case, the phases of the two strong peaks are at the sources, where the response
two sources were chosen to be identical at each frequency {8 singular.

produce perfect correlation, but the relative phases of differ- The power spectruni35), evaluated at the midpoint be-
ent frequency components were random. N tween the sources, is seen in Figd)2 It exhibits a strong

In Fig. 2@) we plot the timet,, of maximum positive  peak at low frequencies, falling to half maximum near 9.5
correlationC(0,r’,t) as a function of positiom’, with the  Hz. (Note that the zero-frequency component is zero in con-
origin at the center of the frame and the sources onxtheis  formity with our definition) At very low frequencies we find
a distance 2=0.1 m apart. The correlation function was that the scaling43) is approached, while the resy8) is
determined by Fourier transforming the power spectrum an@pproached at high frequencies. However, because of the
then t,,, Was found by searching directly for the global relative proximity of the values of, 8, and y., the expo-
maximum. The uncertainty i, was less than 0.25 ms. nents in Eqs(39)—(42) are not clearly manifest.
The value oft,,,, increases toward the outside of the figure, Figure 3 shows results from a numerical simulation of the
reflecting the outward propagation of waves from the twofull nonlinear partial differential equationgl)—(7) carried
sourcegnear whicht,,,, is negative, with the innermost con- out for the canonical parameters using the same methods as
tour drawn at— 10 mg. At large distances the contours ap- in our previous worl{1], but omitting inhibitory effects in
proach circles, as expected for outward propagating waveaccord with the approximations made here. The driven points
from a single sourcéthe sources cannot be distinguished atwere atx= *a, which for the 881 grid used here corre-
large ranges Near each sourctk,,, is negative because a sponds tat 7 grid units with respect to the center. The driv-
given wave crest arrives there before it reaches the referendeg signal at these poinfXQ in Egs. (6) and (7)] was the
point at the origin, while the locus of zero-lag correlation issame zero-mean Gaussian white noise, with a standard de-
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FIG. 3. Wave quantities from numerical simulations of the full 010 A 5 20
nonlinear equation§l)—(7) for the same parameters as in Fig. 2, _ 'S 200
but expressed in different arbitrary unita) Variance logy,C(r,r,0) E o000 £ 150
vs position.(b) Power spectrum at the origin vs frequency. 010 d — 100
' g & 50
~0.20 o}

viation in the time domain of 0.010much smaller than the S 0 0 o0 w0 e o
steady-state driving which was small enough to avoid non- x (m) f (H2)

linear effects. Figure 3 is the result of a simulation lasting

132 s with a step size of 0.25 ms. Figur@3shows that the . ) )
variance (computed directly by accumulating mean and parame_ters listed at the _SFart of Sec_’ &) Time Of_mja,x'mum
mean-square field values at each grid poiras a very simi- corr.ellatlontmax (ms) vs position.(b) MaX|mu.n.1 correlationC,,, VS
lar form to that in Fig. Zc), while Fig. 3b) shows that the position. (c) Variance logoC(r,r,0) vs position.(d) Power spec-
corresponding power spectrufomputed by compiling and trum at the origin vs frequency.

then Fourier transforming a time series over the entire simu- . .

lation) at r=0 is also very similar to that in Fig.(@), with ~ SCurce owing to the noa-function form of t’he 2D propaga-
the half-power point occurring between 9 and 9.5 Hz, closd®r- The maximum occurs on the ciraig=r;=a. The vari-
to the value of 9.5 Hz in the canonical case. A fully linear-2nce plot in Fig. &) is accordingly modified and the power
ized simulation also has been carried out with equivalenfPectrum in Fig. @) is reduced by the expected factor of
results, consistent with nonlinear effects not being importanfour relative to that in Fig. @) [cf. Eq. (39)].

to the results shown in Fig. 3. The similarity between Figs.

2(c) and Zd), on the one hand, and Figs(aB and 3b), on C. Uncorrelated sources

the other, demonstrates that boundary conditions are not im- Figure 5 shows results for a pair of equal-amplitude

portant in determining the correlation and spectral propertiegorrelated(i.e., whose relative phase at a given frequency is
of the wave fields in this case: Fig. 2 is for an infinite me- 5 random number chosen between 0 and I addition to
dlum! .Whl|e Flg. 3 Was'c;a'lculated using perlod}? bounqaryau frequency components having random relative phase, as
conditions. This insensitivity to boundary conditions arisespeforg sources having the canonical parameters. In accor-

because the waves are relatively strongly damped. Robinsgfynce with the remarks in the preceding section, the plot
et al. [1] showed that the width of modal resonances ex-

ceeded their separation for typical cortical parameters, oblit-

FIG. 4. Wave quantities for a single source and the canonical

erating the modal structure of spectra; this result evidently — ozor =" % 0.20
carries over to the correlation properties considered here.
0.10 0.10
. E 0.00F E 0.00
B. Single source = >
Figure 4 shows a situation with the canonical parameters, ™ .
except that the amplitude of the second souatex= + a) —0.20t% 2 —020b LK
has been reduced to zero. The, plot in Fig. 4a) is con- ~020-010 005 010 020 70207010 0.00 0.10 .20
sistent with the two-source plot seen in Figaj2being the (c)
superposition of two single-source plots with the same phase ~ “*’}”
i.e., with self-correlation<,,,, dominating in Eq.(29). The 0.10 /—\ z
velocity of propagation of the point of maximum positive ¢ - -
correlation, obtained from the ratio of the distance traveled = 000 Q )
t0 tmax, IS approximately 8.5 m's'. This is not the same as -0.10} ;4 C
the velocityv of the waves because of the broadening of the
Green'’s function seen in Fig. 1, which weights times greater ~0.20-0.10 0.00 0.10 0.20
thanr/v more strongly than in the limit, B— o, G—0.  (m)
Close analysis of the results in Figlbd shows thaiC, FIG. 5. Wave quantities for two uncorrelated sources and the

actually has a minimum at the sour@he innermost con- canonical parameters listed at the start of Sec. (H). Time of
tours shown correspond to values below 0.98, the value ahaximum correlatiori,,, (M9 vs position.(b) Maximum correla-
the innermost labeled contguiThis results from the imper- tion C,,,, vs position.(c) Variance logC(r,r,0) vs position.(d)
fect correlation between points at different distances from th@ower spectrum at the origin vs frequency.
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FIG. 6. Wave quantities for two correlated sources and the ca- FIG. 7. Wave quantities for two correlated sources and the ca-
nonical parameters listed at the start of Sec. Ill, except that the gainonical parameters listed at the start of Sec. I, except that the gain
G=0.015.(a) Time of maximum correlatiot,,, (M9 vs position.  G=0.95.(a) Time of maximum correlation,,,, (Ms) vs position.

(b) Maximum correlation C, Vs position. (c) Variance (b) Maximum correlation C,,, VS position. (c) Variance
log;oC(r,r,0) vs position.(d) Power spectrum at the origin vs fre- log,,C(r,r,0) vs position.(d) Power spectrum at the origin vs fre-
quency. quency.

of t,aiN Fig. 5a) is almost identical to Fig. (@) in this case, correspondl_ng onein _Flg.(a), con5|s_tent with dominance of
consistent with our picture of outwardly propagating wavesSelf-correlations. In Fig. @) the region of near-perfect cor-
whose time of maximum correlation with the origin is deter- rélation is extended relative to Fig(t, a consequence of
mined by self-correlations rather than the degree of cros&duction in magnitude of the tail of the Green’s function
correlation between the sources. with decreasings that was seen in Figs(d) and Xd). Con-
The plot of &, in Fig. 5b) is very different from the sistent with this interpretation, the velocity of the point of

corresponding plot in Fig. (). Near-perfect correlation is maximum correlation is found to be almost indistinguishable

_ _l . . .
seen near the origin, falling off slowly along tlyeaxis at a f/r;rri?;\r?cggisnr]e?jucg] d Frgétiz\(/z).toFE%Zrteinqgi;ggv;\)’?irfgiztaltlge
similar rate to that in Fig. @), but much more rapidly in the wing to the firstG-dependent factor in Eq26). However,

x direction. Both features are consistent with the discussiorﬁ1 h £ th i imilar. Likewise. th
following Eq. (32). (i) On they axis, the amplitudes of the € shapes ot the contours are very simiar. LIKewise, the
_ — = . _ spectral power is reduced by approximately the same factor

two signals are equal and=C,;. (ii) Near either source, iy Fig. §d). Here we also see that the half-power frequency
that source’s signal will dominate over the signal from the;s gpout 23 Hz, compared to 9.5 Hz in the canonical case.
other source. Hence we expeCt=C,;/\2~1/\/2, consis- Robinsonet al. [1] showed that there low-frequency wave
tent with the numerical value of just under O(ifi.) Far from  modes become less damped Gsincreases, with the least
both sources in th& direction, the nearer source will again damping atf =0. Hence one can expect a narrower spectral
dominate and we expect the correlation function to declingyrofile for smallG.
toward C,;/+/2, which is again consistent with Fig(L§. In Fig. 7(a) we find that the central regions of thg,, plot

The variance plot in Fig.(®) is very similar to that in Fig. are only slightly changed from Fig(&, althoughg=60 and
2(c), except that the variance at large distances from th&=0.95 in this case. In the outer regions, however, the con-
sources is smaller owing to their lack of correlation. In Fig.tours oft,,, undergo a sharper changeover from near-field to
5(d) we see that the power spectrum fluctuates between zefar-field behavior. Consistent with the temporal broadening
and the value for perfectly correlated sources, with an averef the Green’s function for larg&, seen in Fig. (d), Fig.
age of half that value(The fluctuations occur because the 7(b) shows that the correlation function decreases more
relative phase between the sources at a given frequency hasieply at large distances than in Figo)2 The variance plot
single, randomly chosen value; phase is not averaged over gt Fig. 7(c) is similar to that in Fig. &), although the values
each frequency, although this could be don&/hen are higher because of the larger valueXfThe nearness to
smoothed with respect to frequen@yr, equivalently, when an instability atf =0 (which sets in aG=1 [1]) causes the
averaged over many realizations of the phase distribytion power spectrum to be very strongly peaked at low frequen-
the results in Fig. @) correspond to the predicted value cies, with Fig. Td) showing the half-power point at only 2
A=2 in Eqg.(35). Hz.

D. Effect of cortical gain E. Variation of relative phase of correlated sources

Reduction ofG from 0.57 in the canonical case to 0.015 A series of runs has been done in which the phase of
(g=1) scarcely changes the plot@f,in Fig. 6@ from the  source 2atx= +a) has been advanced relative to source 1
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FIG. 8. Wave quantities for two correlated sources and the ca- 4o 5 100
nonical parameters listed at the start of Sec. lIl, except that the rightE 5 800
source leads the left one by/4. (a) Time of maximum correlation = © £ 600
tinax (M9 Vs position.(b) Maximum correlationC . VS position. —o10 o 400
% 200
-0.20 o} N
(at x=—a), while maintaining their correlation. Figures 8 70'2070'105'@% 0.10 020 o 20 f?gz) 60 80
and 9 show results for phase advancesr6f and 7/2, re-
spectively. FIG. 10. Wave quantities for two correlated sources and the

As the phase difference increases, Figka) @nd 9a)  canonical parameters listed at the start of Sec. Ill, except that
show that the zone of negativig,y, around source 2 in- @=/B=2000 s (a Time of maximum correlatior g, (MS) Vs
creases, while that around source 1 decreases and eventudiBsition. (b) Maximum correlationC,., vs position.(c) Variance
disappears for a phase difference of roughl. Likewise, log,(C(r,r,0) vs position.(d) Power spectrum at the origin vs fre-
Figs. §b) and 9b) show that the correlation plots become 44€Ncy-

i ingl i i he ch lative | . L . .

Increasingly asymmetric owing to the changed relative la oint at 12 Hz. This is consistent with E¢42) due to the

introduced by the phase shift of source 2. All of these trend : : " o .
. ; : . relative unimportance of dendritic low-pass filtering in this

are consistent with our picture of the dominance of the two ase

single-source self-correlations in determining the synchrony '

properties of the cortex. IV. DISCUSSION AND CONCLUSIONS

F. Effect of dendritic integration We have studied the dynamics of a cortex driven by a
efinite number of white-noise sources using our wave-
S P sl A o équation formalism. We have computed Green’s functions,
FY_B__ZXl_ s * to minimize the effects of the de_ndrmc power spectra, fluctuation levels, and correlation functions
integration time.(We do not argue that a value this large gnaytically and numerically. The results obtained here re-
would be appropriate for_a_real cortgdhe resglts in Figs. _ produce the main features of zero-lag correlatiesichro-
10(a) and 1@c) are very similar to those seen in the canoni-noys oscillation observed physiologically and defined to be
cal case. The correlation plot in Fig. (B) shows a narrower cross correlations that are maximal at zero time lag. They
zone of very high correlation relative to Fig(l, owing to  confirm numerical results reported by Wrigi#0] and ex-

the narrower form of the Green’s function for highand8  tend these earlier results by showing that zero-lag cross cor-
[see Fig. 18], which requires a closer match between pathrelation between two excited sites on the simulated cortical
lengths from the two sources for high correlations to existsurface can be described by an expression in which only
One should note that the sources are surrounded by regiopsopagation time lags and wave amplitudes in the linked
of lowered correlationcf. the discussion after Eq32)]. The  excitatory elements are of relevance. They show that the
power spectrum in Fig. 18) has a much longer high- most important contributions are from self-correlations of
frequency tail than the canonical one, with the half-powereach source with itself(in general both sources’ self-
correlations are significant at a given pgjnegardless of the
degree of mutual correlation between sources. This result

Figure 10 shows results for a case in which we have s

()

0.20 0.20 \— thus carries over imm(_adiately. to multiple sources. Zero-lag
o oo ) cross correlaltlon of this sort is thereforg expe_cted to be a
widely occurring property of neural nets, including real cor-

E g0 £ 00 @ tical neurons.

» - / < It should be stressed that the zero-lag cross-correlation
~0.10%, —0.10 5 0% results that we have found do not result from the existence of
-0.20 -0.20 & very weakly damped or growing global eigenmodes of the

‘°-2O‘O~1°x°~(‘f> 010 0.20 ‘0-20‘0-’05-(22) 010 020 cortex: Indeed, there are no such modes under the circum-

stances discussed. Nor does it depend strongly on local inhi-
FIG. 9. Wave quantities for two correlated sources and the cabition in the regimes investigated. Qualifications to these
nonical parameters listed at the start of Sec. IIl, except that the rightonclusions are discussed in poifits-(iii ) below.
source leads the left one by/2. () Time of maximum correlation Since the determination of neuronal couplings to high ac-
tmax VS position.(b) Maximum correlationC,q, VS position. curacy is very difficult in most experimental situations, it
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should be noted that our model makes predictions about th® attain zero-lag cross correlatis]. The present match to
generation of nonzero-lag wave motions in the neural fieldexperiment is qualitative only and no regard has been given
around the locus of zero-lag synchrony. The occurrence dfo the inhomogeneity of real interneuronal coupling. The pre-
traveling waves surrounding the fields of synchrony shoulctise details of intercellular couplings, delay, and synaptic
be fairly readily demonstrable, but has not been looked for irgain factors(which are not routinely measuredeed to be
any experiment to date, to the best of the authors’ knowldetermined in physiological experiments before our model
edge. Such surrounding wave motion might be more readilgan be fully quantitatively tested. A further physiologically
observed in local-field potentials or electrocorticogram ratheimportant factor we have omitted is that of nonlinear dy-
than in pulse activity, given the problems of adequate sampamic influences on gain. Such effects can be nonuniform
pling in ongoing pulse trains. and will occur where stimuli are large enough to yield sig-

The present model is not in contradiction with alternatenificant nonlinear responséknear terms are included here
mechanisms of synchrony and synchronous oscillation, suchn physiological terms, nonuniform gain may arise from the
as nonlinear phase locking or cortical driving by synchro-action of the reticular activating systelr6,20].
nous input§9-11,13. Both these processes may supplement (ii) Although our results show that local inhibition is a
the present mechanism. While zero-lag synchrony casmall effect, it should be noted that the inhibitory connectivi-
emerge in the absence of any synchrony in the inputs, this ises are not precisely known. Also, the effectiveness of inhi-
not a necessary condition. The essentially linear mechanisiition may be modulated via dynamical feedback via chemi-
described here might also act to entrain local nonlinear phasgal neurotransmitters and neuromodulators acting on time
locking among individual neurons. Likewise, there is no nec-scales ranging from milliseconds to seconds and longer.
essary contradiction with observations of intrinsic rhythmic-These effects, which are likely to depend strongly on brain
ity of firing in single cells, often associated with synchronousstate(e.g., attentive, relaxed, and sleepingust be included
oscillation[9,10,23. Certain models of learning depending in a full model of electrocortical wave activity and we are
on changes in synaptic strength indicate that cells with incurrently in the process of generalizing our model to incor-
trinsic rhythmicity would emerge as a consequence of inporate them. It is possible that these effects could allow the
duced rhythmic and synchronous firing within a populationcortex to cross the linear stability threshol@€1) into re-
of real neurong24]. gimes of nonlinear dynamics, including limit-cycle oscilla-

Qualifications to our work are that real neurons have comtions or chaos, for example, without necessarily entering a
plicated properties in addition to those represented approxitate of near-maximun@.. Weakly damped or growing
mately in our model and that experimental observations ofvaves(and hence the precise boundary conditjowsuld
real neural synchrony are made in circumstances much mottikely play a more important role in such regimes than for the
elaborate than can be represented by the introduction qfarameters considered here.
noise inputs to two points on a plane. Nonetheless, this (iii) No account is given in the present model for the
model appears to provide a mechanism for the occurrence dfequent occurrence of gamma-band oscillation in associa-
zero-lag maximum cross correlations in physiological obsertion with pulse synchrony. This association has been par-
vations, predicts a range of other observable quantides, tially accounted for by Wrighf20] and will be considered
variance and power spectrand might be extended to cover further in future work.

a wider range of the relevant phenomena when appropriate
allowance is made for complicating factors such as the fol-
lowing points.

(i) To afirst approximation, our results appear adequate to P.A.R. and C.J.R. thank the University of lowa and the
explain the principal qualitative physiological finding upon Mental Health Research Institute of Victoria for their hospi-
which most subsequent work has been based, i.e., excitatidality during visits on which some of this work was under-
of two points on the cortical surface by distinct, unrelatedtaken. This work was supported by the Australian Academy
inputs causes activity on a locus in the vicinity of the inputsof Science and the Ross Trust, Melbourne.
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