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Synchronous oscillations in the cerebral cortex
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The dynamics of a cortex driven by a finite number of white-noise point sources is studied using a recently
developed wave-equation formulation. Green’s functions, power spectra, fluctuation levels, and two-point
correlation functions are computed analytically and numerically. It is shown that a range of observed properties
of so-called synchronous oscillations in the cerebral cortex can be correctly reproduced using the wave equa-
tion that involves only excitatory interactions between neurons. In particular, the observed existence of a
maximal correlation at zero temporal lag between spatially separated points is reproduced and explained for a
cortex driven by two white-noise sources.@S1063-651X~98!03904-X#

PACS number~s!: 87.22.Jb, 87.22.As, 87.10.1e
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I. INTRODUCTION

A long-standing puzzle in neurophysiology is the s
called binding problem, which may be stated as follows
Among the many concurrent patterns of neuronal activ
present simultaneously in the billions of neurons in the bra
how are related aspects of a single stimulus bound toget
For example, how are the disparate features of a face,
analyzed by specific cerebral areas that receive visual in
and respond specifically to movement, angles, color, e
associated and seldom confused with incidental aspect
the background, despite complex concurrent changes in
visual stimulus? Recent findings in neurophysiology indic
that the solution of this problem may lie in the brain’s use
a phenomenon termedsynchronous oscillationto correlate
spatially separated responses to a stimulus. The main
pose of this paper is to apply the recently developed wa
equation formulation of cortical dynamics@1# to elucidate
this phenomenon.

It has been shown that clusters of neurons at simu
neously stimulated sites in the cortex and elsewhere in
brain can exhibit synchronous oscillations of neural firi
rates over distances comparable to the size of the cortex
that this synchrony typically appears in circumstances w
the stimulus properties are such that the features of
stimulus demand binding if a perceptual whole is to be c
ated @2–4#. In this context synchronous oscillations are d
fined to be oscillations for which the temporal cross corre
tion between signals at different locations exhibits
maximum at zero lag; we will also call such oscillatio
zero-lagoscillations on occasion.

In a recent review@5# findings were summarized tha
showed that synchrony appears at multiple scales, from s
pools of locally connected neurons to sites on opposite s
of the brain. Both structural connectivity~e.g., by cortico-
cortical axonal fibers! and functional dynamic state~e.g., by
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level of activation of cortical sites by inputs from subcortic
sites@6#! partially determine which neuronal pools synchr
nize with each other. Relative lags between stimulated s
can be more complicated near the site of input: Some cell
the field of input can lead others nearby by a few millise
onds, particularly if the leading cells are particularly pr
cisely responsive to the features of the stimulus; yet app
ently precise synchrony appears between more distant
and across most cells in the local population@7#.

The mechanism~s! via which the synchronous oscillatio
is generated is a subject of controversy and it is now fa
widely accepted that multiple mechanisms may be involv
@8#. In most instances results cannot be explained by con
rent synchronous inputs to the separated sites, although
sometimes plays a role@9,10#. A variety of other experimen-
tal and theoretical approaches have been made to the p
lem. These include the recognition that limit cycle oscillato
representing single neurons can mutually entrain to form
dependent synchronized clusters@11,12#. Simulations also
indicate that local lateral inhibition might entrain synchro
@13# and that nonoscillating interlocking chains of neuro
~so-called synfire chains! can shift phase into synchron
@14#. Simulations of intercellular interactions in the hippo
ampus, which model excitatory and inhibitory neuronal
teractions via specific chemical neurotransmitters in con
erable detail, were found to account for both synchrony a
specific patterns of firing as seen in in-vitro slices of th
region of the brain@15#. However, these results also depe
primarily on local interactions among inhibitory cells an
encounter some difficulty in explaining the ubiquity of lon
range synchrony mediated by excitatory connections.

All these attempts at elucidation and explanation ha
tended to concentrate upon interactions between spe
cells, considered as interacting discretely with each oth
while ignoring the fact of the embedding of these cells in
continuum of intercellular connections. These considerati
raise the possibility that synchronous oscillation might be
continuum property of large fields of interconnected ce
and might thus be best accounted for by continuum-fi
models of neuronal interactions. Such models have been
veloped primarily to account for traveling-wave propertie
4578 © 1998 The American Physical Society
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57 4579SYNCHRONOUS OSCILLATIONS IN THE CEREBRAL CORTEX
and electrocortical activity more generally, which is usua
recorded from the scalp as an electroencephalogram.

Prominent among models treating the properties of
extended coupled neuronal field are those of Freeman@16#
and Nunez@17#. Recently we proposed a model based
similar assumptions, incorporating locally coupled excitato
and inhibitory neuronal populations, long-range excitato
connections, dendritic integration, and axonal time del
@1,18,19#. The resulting equations describe the spatial a
temporal properties of a uniform cortex in the continuu
approximation and permit simulations on any scale gre
than that of the inhibitory neurons~a few tenths of a milli-
meter!. Using these numerical simulations, it has been de
onstrated recently that fields of zero-lag synchrony that
produce general features of the experimental data can
readily generated@20#. The fields of zero-lag synchrony ap
pear as part of a larger field of lag-correlated~traveling-
wave! activity and do not depend upon synchrony of inpu
nonlinearity of the simulated neurons, or interactions
tween excitatory and inhibitory cells: Purely excitatory inte
actions are sufficient.

Recently, we proposed a nonlinear model of cortical d
namics@1#, similar in physical basis to versions of the d
namical equations introduced earlier@18,19#, but replacing
their formulation in terms of Green’s functions by a wav
equation approach@1#. This model was not identical to th
previous ones, but incorporated the same neurophysics
similar degree of approximation. This model allowed us
find cortical steady states and analyze their stability and
study the propagation and stability of small-amplitude co
cal waves. In the present paper we use it to calculate ana
cally the response of the cortex to a finite number of po
sources of stimulation. The results are used to show
synchronous oscillations arise naturally in the cortex and
be explained simply in terms of propagating waves.

The structure of this paper is as follows. In Sec. II w
briefly review the wave-equation model and write down t
linearized wave equation. We then derive the Green’s fu
tion for propagating cortical waves and use it to calcul
correlation functions, levels and times of maximal corre
tions, and spectra of fluctuations excited by a finite num
of point sources. In Sec. III we evaluate these express
numerically for some representative cases and compare
results with direct solution of the full set of nonlinea
cortical-dynamics equations. Comparisons with experime
results for synchronous oscillations are also discussed in
IV.

II. THEORY

In this section we first outline the main relevant results
our recently developed wave-equation formulation of co
cal dynamics@1#. These results are then applied to derive
Green’s function of propagating cortical disturbances, a
the two-point correlation function and power spectrum
cortical fluctuations driven by a finite number of poi
sources. In all cases we restrict attention to regimes in wh
only stable waves exist@1#; cortical instabilities are not con
sidered.
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A. Dynamical equations

In a previous paper@1# we developed a set of nonlinea
equations for cortical dynamics in the continuum lim
These equations incorporated excitatory and inhibitory n
rons, dendritic integration of inputs to a given neuron, fin
axonal propagation velocities, and the nonlinear relations
between inputs to a neuron and its firing rate.

The first of the central equations of our model is

Qe,i~r ,t !5
1

11e2C[Ve,i ~r ,t !2V0]
, ~1!

which relates the mean firing rateQe,i(r ,t) of neurons~the
pulse densityin neurophysiological terminology! to the ap-
plied potentialVe,i(r ,t), wheree and i denote the excitatory
and inhibitory populations, andC and V0 are constants or
order unity. Potentials are measured in units of the stand
deviation of the distribution of neuronal firing thresholds.

The potentialVe,i(r ,t) at the point where conversion t
neuronal pulses takes place results after inputs have b
summed and filtered through the dendrites. A good appro
mation toVe,i(r ,t) is given by

Ve,i~r ,t !5g
ab

b2a
@Ue,i~r ,t !2We,i~r ,t !#, ~2!

dUe,i~r ,t !

dt
5Qae,ai~r ,t !2aUe,i~r ,t !, ~3!

dWe,i~r ,t !

dt
5Qae,ai~r ,t !2bWe,i~r ,t !, ~4!

where Qae,ai(r ,t) represent arrival rates of input pulses
the dendrites,g is a dendritic gain factor, anda and b are
constants parametrizing the dendritic response to an impu
In effect, diffusion during dendritic propagation smears o
the temporal response and the dendritic tree acts as a
pass filter.

Outgoing pulses from each neuron propagate along
axon and axonal tree at a characteristic velocityv. Assuming
an isotropic distribution of axons whose ranges have an
proximately exponential distribution~see Ref.@1# for de-
tails!, this propagation can be modeled by a wave equa
for the corresponding potentialsfe,i(r ,t):

S ]2

]t2 12ge,i

]

]t
1ge,i

2 2v2¹2Dfe,i~r ,t !5ge,i
2 Qe,i~r ,t !,

~5!

wherege,i5v/r e,i andr e,i are the characteristic ranges of th
axons@1#.

The incident potentialsQae,ai(r ,t) at a particular location
comprise contributions from the wave potentialsfe,i and
inputs external to the cortex. These inputs are usually s
into two components: a uniform meannonspecificexcitation
Qns that results from the total of inputs from noncortic
structures in the brain and aspecificexcitationQs(r ,t) asso-
ciated with the stimulus under investigation. Robinsonet al.
@1# defined Qns to be constant in time and space, whi
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Qs(r ,t) has zero spatial and temporal averages, leadin
the final underlying equations of our model:

Qae~r ,t !5MeQs~r ,t !1meQns1aeefe~r ,t !2aeif i~r ,t !,
~6!

Qai~r ,t !5MiQs~r ,t !1m iQns1aiefe~r ,t !2aii f i~r ,t !.
~7!

Here the constantsMe,i determine the strength of coupling o
specific inputs to excitatory and inhibitory neurons,me,i are
the coupling strengths for nonspecific impulses~i.e., the rel-
evant fractional synaptic densities!, and the coefficientsamn
are the synaptic densities associated with excitatory and
hibitory inputs to excitatory and inhibitory neurons.

B. Wave equation

Robinsonet al. @1# showed that Eqs.~1!–~7! have a stable
low-Qe fixed point providedQns is not too large. Linearizing
the system around this fixed point, they wrote down an
proximate wave equation for the excitatory wave poten
fe alone, from which all other fields could be derived in t
linear limit. In Fourier space, this equation is

@De~k,v!2Fe~v!aee#fe~k,v!5Fe~v!MeQs~k,v!,
~8!

where the cortex is driven by a specific inputQs(k,v), k is
the wave vector,v is the angular frequency,

Fe~v!5grege
2L~v!, ~9!

L~v!5
ab

~a2 iv!~b2 iv!
, ~10!

De~k,v!5~ge2 iv!21k2v2, ~11!

re5CQe
~0!@12Qe

~0!#, ~12!

andQe
(0) is the equilibrium pulse density.

For freely propagating waves, Eq.~8! yields the disper-
sion equation@1#

~a2 iv!~b2 iv!De~k,v!2abge
2G50 ~13!

for Qs50, with

G5greaee. ~14!

Equation~13! implies that only the excitatory field need b
followed for low Qe

(0) , with only excitatory quantities enter
ing its dispersion equation. This is reasonable given the
ponderance of excitatory connections between neurons. R
insonet al. @1# showed that this yields a good approximati
to the dispersive properties of the model medium provid
the wavelengths of the waves are much greater than a
tenths of a millimeter. This is not a significant constraint
practice because typical wavelengths are a few centimete
the human cortex. They also showed that waves are st
for G,1, which will be assumed in what follows her
Wright @20# showed numerically that inhibitory-excitator
interactions can play a role in determining the so-cal
to
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gamma-band~30–80 Hz! spectrum in a strongly stimulate
cortex, but we will not consider this problem here. We ha
recomputed most of the results of this paper with the inc
sion of inhibition, finding only negligible changes for typica
parameters, so we omit these refinements for simplicity.

C. Green’s function

We are interested in calculating the correlation betwe
fe(r ,t) and fe(r 8,t1t) as a function ofr , r 8, and t, a
quantity that is experimentally measured. Hence we fi
wish to calculateG(r ,v) to determine the effect of a poin
source of frequencyv at a ranger . Later we will integrate
this quantity over a frequency spectrum and sum over p
sources to obtain the correlation function in question.

In Fourier space, the Green’s function for the wave eq
tion ~8! is

G~k,v!5
L~v!ge

2gre

k2v21~ge2 iv!22L~v!ge
2G

. ~15!

Using this relationship we can write

G~r ,v!5
L~v!ge

2G

aeev
2 E d2k

~2p!2

eik•r

k21q~v!2
~16!

5
L~v!ge

2G

aeev
2 E

0

`dk k

2p E
0

2p du

2p

eikr cosu

k21q~v!2

~17!

5
L~v!ge

2G

2paeev
2 E0

`

dk
kJ0~kr !

k21q~v!2 ~18!

5
L~v!ge

2G

2paeev
2

K0@q~v!r # ~19!

q~v!5
1

v
@~ge2 iv!22L~v!ge

2G#1/2, ~20!

where J0 and K0 denote Bessel and Macdonald function
respectively. Note that the root chosen in Eq.~20! must have
Req(v).0 for stable waves withG,1; otherwise the
Green’s function diverges with increasingr , which is un-
physical. ForG'0 andv50,

G~r ,0!5
ge

2G

2paeev
2

K0~ger /v !. ~21!

Apart from the factorG/aee5gre , which represents the ne
gain in generatingQs from Qe , this is simply the static
Green’s function derived previously@1#.

The coordinate-space Green’s function can be written
terms of Eq.~12! as
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57 4581SYNCHRONOUS OSCILLATIONS IN THE CEREBRAL CORTEX
G~r ,t !5
ge

2G

2paeev
2E dv

2p
e2 ivtL~v!K0@q~v!r #. ~22!

Unfortunately, the integral in Eq.~22! does not appear to b
expressible in terms of tabulated functions, except in cer
limiting cases. One important such case is the limit in wh
a,b@v andG'0, whereL(v)'1 and

G~r ,t !5
ge

2Ge2get

2paeev
1

Av2t22r 2
Q~vt2r !, ~23!

where Q denotes a unit step function. This result is t
Green’s function forDe(k,v)50, i.e., for the standard two
dimensional, damped wave equation.

Figure 1 shows the integral in Eq.~22!, which we denote
as I (r ,t), for fixed r as a function of time for a variety o
parameters. For largea and b ~short dendritic integration
times! and small to moderate gainG, Fig. 1~a! shows that the
Green’s function is sharply peaked just after the minim
propagation timer /v'11 ms to the point in question. Thi
compares with the algebraic singularity of Eq.~23! in the
limit a,b→`. For largerG, Fig. 1~b! shows that the Green’
function is increased in magnitude@even more so when
G(r ,t) rather than the integralI (r ,t) is considered# and
broadened in time, owing to a greater degree of ‘‘regene
tion’’ of neural pulses at sites away from the origin when t
gain is large. Corresponding results for smallera andb are
shown in Figs. 1~c! and 1~d!. Here the longer dendritic inte
gration time leads to additional broadening of the respons
a function of time and a consequent reduction in the p
magnitude ofI (r ,t) relative to Figs. 1~a! and 1~c!.

D. Correlation functions and spectra

The excitatory wave potentialfe(r ,v) at r due to a
monochromatic point source is given by the product of E

FIG. 1. IntegralsI (r ,t)52paeev
2G(r ,t)/ge

2G from the Green’s
function formula~22! vs t for r 50.1 m,v59 m s21, ge5108 s21,
aee50.853, Qe

(0)50.0103, and C51.82 with ~a! G50.57,
a5b52000 s21; ~b! G50.95, a5b52000 s21; ~c! G50.57,
a5b5400 s21; and ~d! G50.95,a5b5400 s21.
in
h

a-

as
k

.

~19! with Qs(v). The unnormalized second-order correlati
function between a potentialfem due to a more genera
source atRm andfen due to a source atRn is given by

Cmn~r ,r 8,t!5Š@fem~r ,t !2^fem~r ,t !&#

3@fen* ~r 8,t1t!2^fen* ~r 8,t1t!&#‹ ~24!

5E dv

2p
e2 ivtfem~r ,v!fen* ~r 8,v!, ~25!

5S ge
2G

2paeev
2D 2E dv

2p
e2 ivtuL~v!u2

3Qsm~v!Qsn* ~v!K0@q~v!r m#K0* @q~v!r n8#,

~26!

where angle brackets denote an average overt ~over a time
long compared to the phenomena of interest, which prin
pally occur on time scales much less than 1 s!, r m5ur2Rmu,
r n85ur 82Rnu, and we have setMe51 in Eq.~8! without loss
of generality. Note thatQsm(0)50 for all m in accordance
with the definition in Sec. II A, we have used the fact th
fe(r ,t) is real for allr and there is assumed to be no corr
lation between different frequency components of any o
source beyond the correlation implied by the reality
fe(r ,t). Also, uK0u and uLu both decrease at largev for
G,1 in Eq. ~26!.

In the limit with a,b@v and smallG, one can approxi-
mate the integral in Eq.~26! for white-noise sources. Denot
ing this integral byI mn , we find @21#

I mn'
pv

2Ar mr n8
exp@2ge~r m1r n8!/v#E dv

2p

1

~ge
21v2!1/2

3exp@2 ivt1 iv~r m2r n8!/v# ~27!

5
v

2Ar mr n8
exp@2ge~r m1r n8!/v#

3K0@geut1~r n82r m!/vu#. ~28!

The result~28! is included for completeness, but is not us
in what follows.

The total correlation function due to several sources is

C~r ,r 8,t!5(
m,n

Cmn~r ,r 8,t!. ~29!

The normalized correlation function can be written as

C̃~r ,r 8,t!5
C~r ,r 8,t!

@C~r ,r ,0!C~r 8,r 8,0!#1/2
, ~30!

which is unity if r5r 8 andt50. The variance offe at r is

Šufe2^fe~r !&u2
‹5var@fe~r !#5C~r ,r ,0!. ~31!
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For points near a particular source the correlation funct
and the variance are dominated by that source, owing to
singularity inK0(z) at smallz @22#.

Useful limiting forms of the normalized correlation coe
ficient for two sources can be obtained when one sou
dominates atr 8 or when both sources have the same am
tude there. Denoting the fluctuating part offen by f n at r and
f n8 at r 8 and noting that these quantities are real, we can w

C̃~r ,r 8,t!5
^~ f 11 f 2!~ f 181 f 28!&

@^~ f 11 f 2!2&^~ f 181 f 28!2&#1/2
. ~32!

If one source~say 1! dominates over the other atr 8 and
signals from the two sources have equal amplitudes atr , Eq.
~32! then impliesC̃'C̃11/A2 if the sources are uncorrelate
and C̃'C̃11 if they are completely correlated.~Here we use
the notationC̃11 to denote the normalized correlation due
source 1 alone.! This case applies whenr 8 is significantly
closer to one source than the other. If the amplitudes of
signals from the two sources are equal at both points be
correlated one always findsC̃5C̃11.

The power spectrumP(r ,v) is the Fourier transform o
C(r ,r ,t):

P~r ,v!5(
m,n

fem~r ,v!fen* ~r ,v!, ~33!

5S ge
2G

2paeev
2D 2

(
m,n

uL~v!u2Qsm~v!Qsn* ~v!

3K0@q~v!r m#K0* @q~v!r n#. ~34!

For the case of a point midway between two sources w
identical power spectra

P~r ,v!5AS ge
2G

2paeev
2D 2

uL~v!Qs~v!K0@q~v!a#u2,

~35!

where 2a is the separation of the sources,A54 if the
sources are perfectly correlated,A52 if they are uncorre-
lated, andA51 for a single source. At points significantl
closer to one source than the other, the spectrum is do
nated by that of the closer source.

If we denote the argument of any Macdonald function
the previous expressions byz, the relationshipuargzu,p/2
must hold for stable waves since otherwise the relevant
pressions would diverge unphysically at larger @22#. In this
regimeK0(z) can be rapidly evaluated numerically from th
integral form

K0~z!5E
0

`

e2zcoshtdt. ~36!

Provided its argument is not too small, the functionK0 can
be approximated as
n
he

e
i-

te

e
g

h

i-

x-

K0~z!'Ap

2z
e2z, ~37!

which is very fast to evaluate and permits further analy
treatment in some limiting cases. For realz at least, this
approximation is semiquantitatively correct provide
Rez*0.1 and improves in accuracy for largeuzu, with a frac-
tional error of approximately21/8z @22#.

Equations~34!, ~35!, and~37! enable the asymptotic form
of the power spectrum to be determined. For example, m
way between two white noise sources one has

P~r ,v!;5
v25, v@a,b,ge

v24, ge@v@a,b

v23, b@v@a,ge

v22, b,ge@v@a

v21, a,b@v@ge

const, a,b,ge@v.

~38!

~39!

~40!

~41!

~42!

~43!

Note thatb.a has been assumed without loss of general
It is also worth noting that the strong inequalities in Eq
~39!–~42! are seldom well satisfied in humans sincea, b,
andge are typically of the same order@1#.

Before proceeding, we stress that all the above analys
for an infinite cortex. If a finite cortex is to be studied mo
accurately, we should replace Eq.~16! by a sum over all
allowed wave vectors. This sum will then appear in sub
quent formulas. However, if nonuniform (kÞ0) modes are
strongly damped~as our previous work has implied@1#!,
boundary conditions will not have a strong role because~i!
the modes will be indistinguishable due to frequency bro
ening and~ii ! the modes will not be much affected by boun
aries if they largely dissipate before reaching them.

III. NUMERICAL RESULTS

In this section we evaluate a range of properties of co
cal oscillations driven by white-noise sources, including t
correlation function, variance, and power spectrum. By
ploring the effects of varying the cortical parameters and
degree of phase coherence between the sources, these r
enable us to exhibit a robust candidate mechanism for w
has been termed synchronous oscillation. A full parame
survey is not carried out since it is not needed for our m
aim of establishing the existence of the key phenomena.

In this study we use a ‘‘canonical’’ set of parameters u
less otherwise stated. These values are chosen for the
poses of illustration and to provide continuity with previo
work. Except fora andb, the canonical values used are th
same as in our previous work@1#, namely, v59 m s21,
ge5108 s21, g536, aee50.853, Qe

(0)50.0103, C51.82,
G50.57, anda5b5400 s21. We have adopted larger va
ues ofa and b here than previously to model more acc
rately dendritic integration with a mean response time o
ms ~previously we hada5100 s21 andb5350 s21, giving
a peakresponse at 5 ms!. The full Macdonald functions are
used in evaluating analytic expressions from Sec. II,
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57 4583SYNCHRONOUS OSCILLATIONS IN THE CEREBRAL CORTEX
though we have found that the approximation~37! is a good
one for most purposes.

A. Correlated sources

Figure 2 shows results for driving by a pair of perfec
correlated white-noise sources of unit amplitude with the
nonical parameters. The sources are correlated with e
other, but different frequency components of a given sou
are mutually uncorrelated here and in all succeeding figu
Each source was constructed for the purposes of numeric
evaluating the analytical expressions by choosing com
nents of fixed amplitude but random relative phase, dist
uted equally in frequency from zero to a maximum fr
quency (;104 s21) far higher than any inverse time scal
relevant to the problem. In the present case, the phases o
two sources were chosen to be identical at each frequenc
produce perfect correlation, but the relative phases of dif
ent frequency components were random.

In Fig. 2~a! we plot the timetmax of maximum positive
correlationC̃(0,r 8,t) as a function of positionr 8, with the
origin at the center of the frame and the sources on thex axis
a distance 2a50.1 m apart. The correlation function wa
determined by Fourier transforming the power spectrum
then tmax was found by searching directly for the glob
maximum. The uncertainty intmax was less than 0.25 ms
The value oftmax increases toward the outside of the figu
reflecting the outward propagation of waves from the t
sources~near whichtmax is negative, with the innermost con
tour drawn at210 ms!. At large distances the contours a
proach circles, as expected for outward propagating wa
from a single source~the sources cannot be distinguished
large ranges!. Near each sourcetmax is negative because
given wave crest arrives there before it reaches the refer
point at the origin, while the locus of zero-lag correlation

FIG. 2. Wave quantities for two correlated sources and the
nonical parameters listed at the start of Sec. III.~a! Time of maxi-
mum correlationtmax ~ms! vs position.~b! Maximum correlation

C̃max vs position. Note that in this and subsequent figures conto
of this quantity are drawn at levels 0.98, 0.96, 0.94, 0.92, 0.9,
0.7, and 0.6, as required.~c! Variance log10C(r ,r ,0) vs position.~d!
Power spectrum at the origin vs frequency.
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a figure-eight passing through the origin and determined
the interplay between the relative path lengths to the po
in question and the relative amplitudes of the two signals

One important point is that the correlation has the spa
dependence of self-correlationsCmm alone. This can be see
by substitutingr 15r 25a into Eq. ~26! for correlations rela-
tive to the origin, which gives

C~0,r 8,t!5S ge
2G

2paeev
2D 2E dv

2p
e2 ivtuL~v!u2

3K0@q~v!a#@Qs1~v!1Qs2~v!#

3$Qs1~v!K0@q~v!r 18#1Qs2~v!K0@q~v!r 28#%* .

~44!

We see from this expression that all the terms are of the s
form as those inC11 andC22 and that both of these terms a
important. The only role played by the relative correlati
between the sources is to determine the number of factor
uQs1u2 that will appear in the final expression. This result
in accord with the discussion following Eq.~35!.

Figure 2~b! showsC̃max, the maximum positive correla
tion C̃(0,r 8,t), as a function ofr 8. A broad maximum of
near-perfect correlation is seen near the center of the fig
decreasing slowly toward the edges. Naively, one might
pect perfect correlation at all points for perfectly correlat
sources. However, two-dimensional~2D! wave equations do
not yield d-function propagators~see Fig. 1, for example!
and this reduces the correlation below unity at large rang
We explore this point further in Sec. III B. The remainin
point visible in Fig. 2~b! is the pair of features at the source
The lowered correlation here is due to the dominance o
single source, as explained following Eq.~32!.

Figure 2~c! shows the varianceC(r ,r ,0) as a function of
r . This quantity is seen to fall off approximately expone
tially with distance from each source at large distances~as
seen by the nearly uniformly spaced logarithmic contou!.
This reflects the exponential distribution of axonal rang
The two strong peaks are at the sources, where the resp
is singular.

The power spectrum~35!, evaluated at the midpoint be
tween the sources, is seen in Fig. 2~d!. It exhibits a strong
peak at low frequencies, falling to half maximum near 9
Hz. ~Note that the zero-frequency component is zero in c
formity with our definition.! At very low frequencies we find
that the scaling~43! is approached, while the result~38! is
approached at high frequencies. However, because of
relative proximity of the values ofa,b, andge , the expo-
nents in Eqs.~39!–~42! are not clearly manifest.

Figure 3 shows results from a numerical simulation of t
full nonlinear partial differential equations~1!–~7! carried
out for the canonical parameters using the same method
in our previous work@1#, but omitting inhibitory effects in
accord with the approximations made here. The driven po
were atx56a, which for the 81381 grid used here corre
sponds to67 grid units with respect to the center. The dri
ing signal at these points@Qs in Eqs. ~6! and ~7!# was the
same zero-mean Gaussian white noise, with a standard
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viation in the time domain of 0.010~much smaller than the
steady-state driving!, which was small enough to avoid non
linear effects. Figure 3 is the result of a simulation lasti
132 s with a step size of 0.25 ms. Figure 3~a! shows that the
variance ~computed directly by accumulating mean a
mean-square field values at each grid point! has a very simi-
lar form to that in Fig. 2~c!, while Fig. 3~b! shows that the
corresponding power spectrum~computed by compiling and
then Fourier transforming a time series over the entire sim
lation! at r50 is also very similar to that in Fig. 2~d!, with
the half-power point occurring between 9 and 9.5 Hz, clo
to the value of 9.5 Hz in the canonical case. A fully linea
ized simulation also has been carried out with equival
results, consistent with nonlinear effects not being import
to the results shown in Fig. 3. The similarity between Fi
2~c! and 2~d!, on the one hand, and Figs. 3~a! and 3~b!, on
the other, demonstrates that boundary conditions are not
portant in determining the correlation and spectral proper
of the wave fields in this case: Fig. 2 is for an infinite m
dium, while Fig. 3 was calculated using periodic bounda
conditions. This insensitivity to boundary conditions aris
because the waves are relatively strongly damped. Robin
et al. @1# showed that the width of modal resonances
ceeded their separation for typical cortical parameters, o
erating the modal structure of spectra; this result evide
carries over to the correlation properties considered here

B. Single source

Figure 4 shows a situation with the canonical paramet
except that the amplitude of the second source~at x51a)
has been reduced to zero. Thetmax plot in Fig. 4~a! is con-
sistent with the two-source plot seen in Fig. 2~a! being the
superposition of two single-source plots with the same ph
i.e., with self-correlationsCmm dominating in Eq.~29!. The
velocity of propagation of the point of maximum positiv
correlation, obtained from the ratio of the distance trave
to tmax, is approximately 8.5 m s21. This is not the same a
the velocityv of the waves because of the broadening of
Green’s function seen in Fig. 1, which weights times grea
than r /v more strongly than in the limita,b→`, G→0.

Close analysis of the results in Fig. 4~b! shows thatC̃max
actually has a minimum at the source~the innermost con-
tours shown correspond to values below 0.98, the valu
the innermost labeled contour!. This results from the imper
fect correlation between points at different distances from

FIG. 3. Wave quantities from numerical simulations of the f
nonlinear equations~1!–~7! for the same parameters as in Fig.
but expressed in different arbitrary units.~a! Variance log10C(r ,r ,0)
vs position.~b! Power spectrum at the origin vs frequency.
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source owing to the non-d-function form of the 2D propaga
tor. The maximum occurs on the circler 15r 185a. The vari-
ance plot in Fig. 4~c! is accordingly modified and the powe
spectrum in Fig. 4~d! is reduced by the expected factor
four relative to that in Fig. 2~d! @cf. Eq. ~35!#.

C. Uncorrelated sources

Figure 5 shows results for a pair of equal-amplitudeun-
correlated~i.e., whose relative phase at a given frequency
a random number chosen between 0 and 2p, in addition to
all frequency components having random relative phase
before! sources having the canonical parameters. In acc
dance with the remarks in the preceding section, the p

FIG. 4. Wave quantities for a single source and the canon
parameters listed at the start of Sec. III.~a! Time of maximum

correlationtmax ~ms! vs position.~b! Maximum correlationC̃max vs
position. ~c! Variance log10C(r ,r ,0) vs position.~d! Power spec-
trum at the origin vs frequency.

FIG. 5. Wave quantities for two uncorrelated sources and
canonical parameters listed at the start of Sec. III.~a! Time of
maximum correlationtmax ~ms! vs position.~b! Maximum correla-

tion C̃max vs position.~c! Variance log10C(r ,r ,0) vs position.~d!
Power spectrum at the origin vs frequency.
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57 4585SYNCHRONOUS OSCILLATIONS IN THE CEREBRAL CORTEX
of tmax in Fig. 5~a! is almost identical to Fig. 2~a! in this case,
consistent with our picture of outwardly propagating wav
whose time of maximum correlation with the origin is dete
mined by self-correlations rather than the degree of cr
correlation between the sources.

The plot of C̃max in Fig. 5~b! is very different from the
corresponding plot in Fig. 2~b!. Near-perfect correlation is
seen near the origin, falling off slowly along they axis at a
similar rate to that in Fig. 2~b!, but much more rapidly in the
x direction. Both features are consistent with the discuss
following Eq. ~32!. ~i! On they axis, the amplitudes of the
two signals are equal andC̃5C̃11. ~ii ! Near either source
that source’s signal will dominate over the signal from t
other source. Hence we expectC̃'C̃11/A2'1/A2, consis-
tent with the numerical value of just under 0.7.~iii ! Far from
both sources in thex direction, the nearer source will aga
dominate and we expect the correlation function to dec
toward C̃11/A2, which is again consistent with Fig. 5~b!.

The variance plot in Fig. 5~c! is very similar to that in Fig.
2~c!, except that the variance at large distances from
sources is smaller owing to their lack of correlation. In F
5~d! we see that the power spectrum fluctuates between
and the value for perfectly correlated sources, with an av
age of half that value.~The fluctuations occur because th
relative phase between the sources at a given frequency
single, randomly chosen value; phase is not averaged ov
each frequency, although this could be done.! When
smoothed with respect to frequency~or, equivalently, when
averaged over many realizations of the phase distributi!,
the results in Fig. 5~d! correspond to the predicted valu
A52 in Eq. ~35!.

D. Effect of cortical gain

Reduction ofG from 0.57 in the canonical case to 0.01
(g51) scarcely changes the plot oftmax in Fig. 6~a! from the

FIG. 6. Wave quantities for two correlated sources and the
nonical parameters listed at the start of Sec. III, except that the
G50.015.~a! Time of maximum correlationtmax ~ms! vs position.

~b! Maximum correlation C̃max vs position. ~c! Variance
log10C(r ,r ,0) vs position.~d! Power spectrum at the origin vs fre
quency.
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corresponding one in Fig. 2~a!, consistent with dominance o
self-correlations. In Fig. 6~b! the region of near-perfect cor-
relation is extended relative to Fig. 2~b!, a consequence of
reduction in magnitude of the tail of the Green’s functio
with decreasingG that was seen in Figs. 1~c! and 1~d!. Con-
sistent with this interpretation, the velocity of the point o
maximum correlation is found to be almost indistinguishab
from v59 m s21 in Fig. 2~b!. Figure 6~c! shows that the
variance is reduced relative to that in Fig. 2~c!, principally
owing to the firstG-dependent factor in Eq.~26!. However,
the shapes of the contours are very similar. Likewise, t
spectral power is reduced by approximately the same fac
in Fig. 6~d!. Here we also see that the half-power frequen
is about 23 Hz, compared to 9.5 Hz in the canonical ca
Robinsonet al. @1# showed that there low-frequency wav
modes become less damped asG increases, with the leas
damping atf 50. Hence one can expect a narrower spect
profile for smallG.

In Fig. 7~a! we find that the central regions of thetmax plot
are only slightly changed from Fig. 2~a!, althoughg560 and
G50.95 in this case. In the outer regions, however, the co
tours oftmax undergo a sharper changeover from near-field
far-field behavior. Consistent with the temporal broadeni
of the Green’s function for largeG, seen in Fig. 1~d!, Fig.
7~b! shows that the correlation function decreases mo
steeply at large distances than in Fig. 2~b!. The variance plot
in Fig. 7~c! is similar to that in Fig. 2~c!, although the values
are higher because of the larger value ofG. The nearness to
an instability atf 50 ~which sets in atG51 @1#! causes the
power spectrum to be very strongly peaked at low freque
cies, with Fig. 7~d! showing the half-power point at only 2
Hz.

E. Variation of relative phase of correlated sources

A series of runs has been done in which the phase
source 2~at x51a) has been advanced relative to source

a-
in

FIG. 7. Wave quantities for two correlated sources and the
nonical parameters listed at the start of Sec. III, except that the g
G50.95. ~a! Time of maximum correlationtmax ~ms! vs position.

~b! Maximum correlation C̃max vs position. ~c! Variance
log10C(r ,r ,0) vs position.~d! Power spectrum at the origin vs fre
quency.
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~at x52a), while maintaining their correlation. Figures
and 9 show results for phase advances ofp/4 andp/2, re-
spectively.

As the phase difference increases, Figs. 8~a! and 9~a!
show that the zone of negativetmax around source 2 in-
creases, while that around source 1 decreases and even
disappears for a phase difference of roughlyp/2. Likewise,
Figs. 8~b! and 9~b! show that the correlation plots becom
increasingly asymmetric owing to the changed relative
introduced by the phase shift of source 2. All of these tre
are consistent with our picture of the dominance of the t
single-source self-correlations in determining the synchr
properties of the cortex.

F. Effect of dendritic integration

Figure 10 shows results for a case in which we have
a5b523103 s21 to minimize the effects of the dendriti
integration time.~We do not argue that a value this larg
would be appropriate for a real cortex.! The results in Figs.
10~a! and 10~c! are very similar to those seen in the cano
cal case. The correlation plot in Fig. 10~b! shows a narrower
zone of very high correlation relative to Fig. 2~b!, owing to
the narrower form of the Green’s function for higha andb
@see Fig. 1~a!#, which requires a closer match between pa
lengths from the two sources for high correlations to ex
One should note that the sources are surrounded by reg
of lowered correlation@cf. the discussion after Eq.~32!#. The
power spectrum in Fig. 10~d! has a much longer high
frequency tail than the canonical one, with the half-pow

FIG. 8. Wave quantities for two correlated sources and the
nonical parameters listed at the start of Sec. III, except that the r
source leads the left one byp/4. ~a! Time of maximum correlation

tmax ~ms! vs position.~b! Maximum correlationC̃max vs position.

FIG. 9. Wave quantities for two correlated sources and the
nonical parameters listed at the start of Sec. III, except that the r
source leads the left one byp/2. ~a! Time of maximum correlation

tmax vs position.~b! Maximum correlationC̃max vs position.
ally
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point at 12 Hz. This is consistent with Eq.~42! due to the
relative unimportance of dendritic low-pass filtering in th
case.

IV. DISCUSSION AND CONCLUSIONS

We have studied the dynamics of a cortex driven by
finite number of white-noise sources using our wav
equation formalism. We have computed Green’s functio
power spectra, fluctuation levels, and correlation functio
analytically and numerically. The results obtained here
produce the main features of zero-lag correlations~synchro-
nous oscillation! observed physiologically and defined to b
cross correlations that are maximal at zero time lag. Th
confirm numerical results reported by Wright@20# and ex-
tend these earlier results by showing that zero-lag cross
relation between two excited sites on the simulated cort
surface can be described by an expression in which o
propagation time lags and wave amplitudes in the link
excitatory elements are of relevance. They show that
most important contributions are from self-correlations
each source with itself~in general both sources’ self-
correlations are significant at a given point!, regardless of the
degree of mutual correlation between sources. This re
thus carries over immediately to multiple sources. Zero-
cross correlation of this sort is therefore expected to b
widely occurring property of neural nets, including real co
tical neurons.

It should be stressed that the zero-lag cross-correla
results that we have found do not result from the existenc
very weakly damped or growing global eigenmodes of
cortex: Indeed, there are no such modes under the circ
stances discussed. Nor does it depend strongly on local i
bition in the regimes investigated. Qualifications to the
conclusions are discussed in points~i!–~iii ! below.

Since the determination of neuronal couplings to high
curacy is very difficult in most experimental situations,

a-
ht

a-
ht

FIG. 10. Wave quantities for two correlated sources and
canonical parameters listed at the start of Sec. III, except
a5b52000 s21. ~a! Time of maximum correlationtmax ~ms! vs

position. ~b! Maximum correlationC̃max vs position.~c! Variance
log10C(r ,r ,0) vs position.~d! Power spectrum at the origin vs fre
quency.
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should be noted that our model makes predictions about
generation of nonzero-lag wave motions in the neural fi
around the locus of zero-lag synchrony. The occurrence
traveling waves surrounding the fields of synchrony sho
be fairly readily demonstrable, but has not been looked fo
any experiment to date, to the best of the authors’ kno
edge. Such surrounding wave motion might be more rea
observed in local-field potentials or electrocorticogram rat
than in pulse activity, given the problems of adequate sa
pling in ongoing pulse trains.

The present model is not in contradiction with alterna
mechanisms of synchrony and synchronous oscillation, s
as nonlinear phase locking or cortical driving by synch
nous inputs@9–11,13#. Both these processes may supplem
the present mechanism. While zero-lag synchrony
emerge in the absence of any synchrony in the inputs, th
not a necessary condition. The essentially linear mechan
described here might also act to entrain local nonlinear ph
locking among individual neurons. Likewise, there is no n
essary contradiction with observations of intrinsic rhythm
ity of firing in single cells, often associated with synchrono
oscillation @9,10,23#. Certain models of learning dependin
on changes in synaptic strength indicate that cells with
trinsic rhythmicity would emerge as a consequence of
duced rhythmic and synchronous firing within a populati
of real neurons@24#.

Qualifications to our work are that real neurons have co
plicated properties in addition to those represented appr
mately in our model and that experimental observations
real neural synchrony are made in circumstances much m
elaborate than can be represented by the introduction
noise inputs to two points on a plane. Nonetheless,
model appears to provide a mechanism for the occurrenc
zero-lag maximum cross correlations in physiological obs
vations, predicts a range of other observable quantities~e.g.,
variance and power spectra!, and might be extended to cove
a wider range of the relevant phenomena when approp
allowance is made for complicating factors such as the
lowing points.

~i! To a first approximation, our results appear adequat
explain the principal qualitative physiological finding upo
which most subsequent work has been based, i.e., excita
of two points on the cortical surface by distinct, unrelat
inputs causes activity on a locus in the vicinity of the inpu
.
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to attain zero-lag cross correlation@5#. The present match to
experiment is qualitative only and no regard has been gi
to the inhomogeneity of real interneuronal coupling. The p
cise details of intercellular couplings, delay, and synap
gain factors~which are not routinely measured! need to be
determined in physiological experiments before our mo
can be fully quantitatively tested. A further physiological
important factor we have omitted is that of nonlinear d
namic influences on gain. Such effects can be nonunifo
and will occur where stimuli are large enough to yield s
nificant nonlinear responses~linear terms are included here!.
In physiological terms, nonuniform gain may arise from t
action of the reticular activating system@6,20#.

~ii ! Although our results show that local inhibition is
small effect, it should be noted that the inhibitory connecti
ties are not precisely known. Also, the effectiveness of in
bition may be modulated via dynamical feedback via che
cal neurotransmitters and neuromodulators acting on t
scales ranging from milliseconds to seconds and long
These effects, which are likely to depend strongly on br
state~e.g., attentive, relaxed, and sleeping!, must be included
in a full model of electrocortical wave activity and we a
currently in the process of generalizing our model to inc
porate them. It is possible that these effects could allow
cortex to cross the linear stability threshold (G51) into re-
gimes of nonlinear dynamics, including limit-cycle oscilla
tions or chaos, for example, without necessarily enterin
state of near-maximumQe . Weakly damped or growing
waves ~and hence the precise boundary conditions! would
likely play a more important role in such regimes than for t
parameters considered here.

~iii ! No account is given in the present model for t
frequent occurrence of gamma-band oscillation in asso
tion with pulse synchrony. This association has been p
tially accounted for by Wright@20# and will be considered
further in future work.
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